UNCLASSIFIED

+r 259 865

Reproduced
by the
ARMED SERVICES TECHNICAL INFORMATION AGENCY

ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When govermment or other drawings, speci-
flcations or other data are used for any purpose
other than in comnection with & definitely related
government procurement operation, the U. S.
Government thereby *lncurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as In any menner licemsing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



caraLoaep By ASTIA

REPORT NO. TDR-594(1990)TN-1

An Introduction to Inertial
Guidance Concepts for

Ballistic Missiles (A Tutorial Report)

18 MARCH 1961

Prepared by DAVID W. WHITCOMBE

For ATR FORCE BALLISTIC MISSILE DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE, Inglewood, California

AEROSPACE CORPORATION

CONTRACT NO. AF 04647)-594

TN

Frm ~f7‘:'1‘7’::;i‘:{§ ;E Pk s
vy, A fa 2 BRSNS e A
) A 4

Of-
YA




R RTINS DAY

Report No.
TDR-594(1990)TN-1

AN INTRODUCTION TO INERTIAL GUIDANCE
CONCEPTS FOR BALLISTIC MISSILES

(A TUTORIAL REPORT)

by
David W, Whitcombe

AEROSPACE CORPORATION
El Segundo, California

Contract AF 04(647)-594

15 March 1961

Prepared for

AIR FORCE BALLISTIC MISSILE DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE

Inglewood, California



ABSTRACT

Various aspects of guidance and control for ballistic
missilesarepresented. A discussion of the required
velocity vector is given with several examples based
upon the flatearthmodel. Error analysis procedures
involving inertial reference and measurement sys-

tems are treated in some detail.. .

Missile steering techniques are approached in such a
way that stability is not a problem. Procedures for
insuring that the missile velocity will be controlled to
the required velocity without payload loss penalties
aregiven. This is accomplished by introducing tra-
jectory-shaping functions that cause the guided bal-
listic missile to closely follow the nominal reference

trajectory.

The steeringdiscussioninitially assumes a point mass
missile. Control sysdtem'complications that result

fromactual missiledynamics are treated separately.
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I. GENERAL DISCUSSION

The purpose of a ballistic missile guidance system is to obtain engine
steering and shutoff information by operating on measured data. These
systems are basically of two types, radio and inertial. A summary descrip-

tion of each is given below.

Radio guidance makes position and/or veloéity measurements from
ground-based radar. These measurements are input to a ground-based
computer where guidance commands are computed. These commands are
sent to the missile control system via a radio link., A radio guidance sys-
tem requires missile visibility from the tracking radar site. In some
cases a downrange station must be provided to insure this visibility. A
constraint on the missile attitude may also be imposed because the beacon
antenna is attached to the missile. The accuracy of the all-electronic
radio guidance systems, especially those with long base lines, is generally

better than may be obtained with inertial guidance systems (IGS's).

An all-inertial guidance system for ballistic missiles makes accelera-
tion measurements in a gyro-stabilized platform coordinate system. *
These measurements are input to an airborne computer where guidance
commands are computed and relayed to the control system. The control
system used with an IGS may be simplified in that the conventional gyro
attitude reference normally used with radio guidance may be replaced by
the inertial platform. The electromechanical sensors used in inertial
guidance systems are subject to error. The precision gyros, used in the
platform, drift over long periods of time resulting in significant coordinate
system errors. The bias and scale factor errors in the accelerometer
result in position and velocity errors in the navigation loop. The above
IGS errors are offset by the flexibility offered by a self-contained non -
radiating system. Present day IGS accura"cy is satisfactory for most

-

*Guidance principles that are directly related to strapped-down IG systems
will not be discussed in this report.
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space applications in the earth's gravitational field; this system may also
be used for ballistic missile launch guidance to lunar impact. For more
complicated missions, lasting many days or months, an IGS may be aided
with a star and/or planet tracker. Radio guidance may also be used as an
inertial aid, especially when target acquisition greatly simplifies the guid-

ance task.

The principal differences between radio and all-inertial systems then
involve the form of the original measurements. With either system suf-
ficient data must be measured to allow the calculation of position and
velocity vectors, .ﬁ and -P:, of the missile in some suitable coordinate
system. A velocity deviation measured from the desired missile velocity
may be obtained. The thrust acceleratio;l, “ST, may then be steered in
direction so as to drive the yaw and pitch components of the velocity
deviation to zero. When the axial (or roll) error velocity component is
reduced to zero, engine thrust is terminated. The missile will then
coast to its target under the influence of mass attraction forces exerted

by the earth, sun, other planets, etc.

Note that it is assumed here that the thrust acceleration, -;T’ can
only be steered in direction and not controlled in magnitude. This lack of
control does not impose a serious restraint because the magnitude of ?T

is designed to be reproducible within tolerances of a few percent.

This memo will be concerned with all-inertial guidance systems used
for ballistic missile guidance. The duration of powered flight in a ballistic
trajectory is usually several minutes, during which accelerations may
reach 15 g's. All guidance equipment on board the missile must operate

with a high degree of reliability in this environmeit.

The following sections of this memo will discuss inertial coordinate
systems, measurement errors, the navigation loop, guidance computations,

and ballistic missile steering.



II. INERTIAL COORDINATE SYSTEMS

A coqrdi_nate system (CS) will be specified in this sectior£ in terms of
three mutually orthogonal inertial dire:cgions. These directions are indi-
cated by three unit vectors, which are termed basis vectors. FEach
coordinate system is then defined by specifying the directions of the three
basis vectors. Four coordinate systems will be discussed. The orienta-
tion of the three basis vlectors will in each case be apparent. In no case
will the transformation from one CS to another be written out as a set of
equations. The orientation of the basis vectors is always assumed known,
and these transformations can generally be written by inspection in terms

of the geometry of the system.

The inertial measurement unit consists of three accelerometers
mounted on a gyro-stabilized platform. In this memo, it will be assumed
that the reference platform will maintain a fixed orientation with respect
to inertial space. Platform hardware such as gimbals, the porro ptrism,
etc., must be used to specify three orthogonal platform directions. These
directions define the platform coordinate system. Initial platform CS
alignment is accomplished with respect to an external CS. The three in-
put axes of the platform stabilizing gyros define a second coordinate sys-
tem. This CS must be defined in order to perform platform drift error
analyses. It will be shown in the next section that the orientation of each
gyro must be specified. The three accelerometers are fixed rigidly to
the inertial platformm. The directions of the three accelerometers define
the accelerometer coordinate system. This is an important CS because
it is the one in which the measurements of sensed acceleration, ?T’ are

made.

A fourth coordinate system is of interest. This will be referred to
as the computing coordinate system, and is the one used for guidance cal-
culations. This CS may be an earth-centered inertial CS in which the
expressic;n for gravity may be easily calculated. ‘Other coordinate systems
have other desirable properties. The four coordinate systems.above mayall

be equivalent or they may all be different depending onactual hardware and
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guidance mechanizations, In any case, the transformations from any one
CS to any other CS will be known, Hence, for purposes of this memo, it
may be assumed that the accelerometer coordinate system and the com-

puting coordinate system are identical,

The computing CS will bj specified in terms of the three mutually
-h -
orthogonal unit vectors i, j, and k. The missile position and velocity

may be written in terms of this set of inertial basis vectors as

- S - S
R = Xi+Yj+2Zk
_:\ - - —
R = Xi+Yj+2zk

where X,Y, Z and X,Y,Z are the components of missile position and

velocity respectively, The computing coordinate system inertial basis
- S

vectors 1i,j, k may be used to evaluate the components of any vector

used in the following section, For example,

- =

X = R-*1
S D
:R-j
e

Z = Rk

7
J

~
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III, INERTIAL GUIDANCE MEASUREMENT ERRORS

Inertial guidance measurement errors affect both the magnitude and
direction of the sensed acceleration. These error sources are conven-

iently classed as follows:
a) Accelerometer bias, scale factor, and second-degree errors;
b) Accelerometer and platform misalignments;
c) Fixed and acceleration-dependent gyro drift rates.

Errors in Class (a) affect the magnitude of the sensed acceleration,

while Class (b) and (c) errors affect the direction.

Detailed discussions of inertial guidai.~e error analysis techniques
are given in References (1) and (2). A summary description is given

below.

Sensed Acceleration Magnitude Errors:

All accelerometers contain some moving parts. When acceleration
is sensed, forces within the instrument cause an internal displacement
that is proportional to the acceleration. When the device is used during
ballistic coast periods, no such forces act on the internal parts of the
instrument. There are no internal displacements in a zero-g field when
changes in E within the instrument are neglected. Hence, the reading of

an ideal accelerometer is

3. :-R-% 3.1
ap = R-g (3. 1)
where
.Y
R = acceleration of the missile with respect to inertial space
'g'\ = acceleration of gravity
?T = the sum of all external accelerations acting on the missile

N
except g
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Let am, and a"'.[‘x denote the ideal and actual readings of the i

accelerometer. The accelerometer error AaTx is then

Aa =

Tx -a

al
Tx Tx

Accelerometer measurement errors result from bias, cross acceleration,

and nonlinearity errors. A general expression for accelerometer error

is given as

AaTx = ko + k1 ap, t k2 aLTy + k3 ap, t+ kll a‘TxZ + k12 a.,I.xa.TY +...
(3.2)
where
ko = bias coefficient
k1 = scale factor coefficient
kz,k3 = cross axis coefficients
k11 = second-degree error coefficient
klZ’ etc. = additional nonlinearity error coefficients
a’Tx’a'Ty'aTz = components of sensed acceleration

Y

: -
Expressions similar to equation (3. 2) are used for the r and k accelero-
meters. The relative magnitude of the error coefficients in equation

(3. 2) depends on the particular accelerometer design. The actual values

are usually obtained from the manufacturer or impartial testing agencies.

Accelerometer and Platform Misalignments:

The accelerometers cannot be mounted on the platform without intro-
ducing some error. Similarly the platform cannot be leveled and aligned
in azimuth without error. As a result, six misalignment angles, two for
each accelerometer, are required to express the misalignment of the

accelerometer package with respect to inertial space.

-6~



Let ?, -3, K denote the desired orientation of the three accelerometers.

The actual orientations ?, -jﬁ, and f’ are then

- _ = - =

i' = i+ ¢12_] + ¢13

= _ 2 > >

it = j o+ ¢Z3k + ¢211 (3.3)
- KN S N -

k" = k + ¢3li + ¢32j

where the Brpr v denote the small misalignment angles, For
-—

¢
example, $54 is the migilignment of the ? accelerometer in the k _
direction, The misalignment angles may be specified in several ways,
For example, three angles may be used to specify the platform level and
azimuth alignment, These angles are equivalent to P13 %23 and $12°
The 1 accelerometer may then be mounted on the platform with zero
error assumed. The ‘3 accelerometer is then mounted on the platform
with respect to 1; the error is $51- The k accelerometer is then
mounted with errors ¢31 and ¢32. Again, let Ay aTy’ and ag,
denote the ideal accelerometer measurements. The actual measurements

) 1 1 H 3
ay aTy, ag,s are obtained from equation (3. 3) as

1 —

arx = 21x t %1227y t %1337,

a1y = 31y t Pp337, t 9137k (3.4)
3Tz = 21z t $3137x * $322Ty

The last two terms in each of equations (3.4) are error terms. These

are easily calculated using standard missile simulation programs.

Platform Drift Error:

Coordinate system errors result from drifts in the platform stabi-
lizing gyros. In addition to the steady drift rate of the gyro, acceleration-
dependent drift rates may exist. These latter drift rates are referred to
as mass unbalance and anisoelastic drift rates. The following discussion

is included to aid in understanding the nature of IGS platform drift.

-7-
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A platform uses three single-degree-of-freedom gyros or two two-
degree-of-freedom gyros. The three orthogonal axes of a single-degree-

of-freedom gyro are shown in Figure 3, 1.

| gn (spih axis)

- 6n(output axis)

/

-
In (input axis)

Figure 3.1 - Axes of a SDF Gyro

JEOEL NS, ¥

RN
In Figure 3.1, the subscript n=1, 2,or 3 is added to S, I, and O

to indicate the spin, input, or output axis of the nth

platform gyro. A
platform SDF rate integrating gyro is designed to measure only angular
rates about the input axis, An angle pickoff on the output axis measures
the input angular rate. Angular rates about the output axis do not cause
a pickoff indication because the viscous fluid damping constrains the case

motion to follow the inner gimbal motion.

A conventional two-degree-of-freedom gyro differs from a SDF gyro

in that an additional gimbal and pickoff are added. As such, the 2-DF gyro



T —

may be considered equivalent in performance to two SDF gyros. When two

2-DF gyros are used to stabilize the platform a redundant control direction
is provided., This redundant direction will be ignored in this analysis. The
subscript n will be used to denote any one of three orthogonal input axes

that are used,

A 2-DF gyro does not require the viscous damping restraint. In fact, the
flotation fluid has negligible damping. The additional gimbal and pickoff

is provided so that angular displacements about both input axes may be meas-

ured. The directions of these axes are shown in Figure 3. 2. Note that

each input axis is also an output axis.

—

-
,—Ol. IZ

I, -0O

Figure 3.2 - Axes for a 2-DF Gyro

The angular momentum of the gyro spin rotor is large compared to

the gimbal momenta and certain other dynamical terms discussed in



References (3) and (4). Hence, the law of the gyro is approximated as

- - -
T = w AH (3.5)
n n n
where
N
Hn = vector angular momentum of the gyro wheel
- ;
Tn = residual unbalance torques within the gyro

The symbol A is used to denote the vector cross product,

Both SDF and 2-DF gyros drift as a result of unbalance torques acting
about the output axis. When both sides of equation (3.5) are multiplied by

-
On (scalar product) the result is

-— -— s - -
Tn ’ on = (wn/\Hn) On
—t - -
= H w_ * (SAO)
n n n n
- P N
= -H [Y) .

nn-"n_ -

Hence, thc platform drift rates about the three input axes, w , may be
written as™

—

1 -—
w = -H—nTn-On (3.6)
Fixed, i.e., constant or steady, gyro drift rates are usually denoted
by R. These drift rates result from fixed residual torques, E\‘o’ within
the gyro such as bearing frictions and pickoff reactions. Then the fixed
drift rate of the n' platform gyro is

- -
T 0 (3.7)
on n

o]
:l:lb—c

% .
The presentation in this section is based on originad work by T, W, Layton
and H., Cohen,
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A mass unbalance within the nth gyro is approximately equivalent to the

torque
- IS
Tn = mnGn/\ 2 . (3.8)
where
m = internal gyro mass
-
6n = vector displacement of the center of mass of the rotor gimbal
system
Y
ap = sensed acceleration vector

- - .
The quantities Sn and ap may be written as

- FES - S S A
ap = (aT- On) On+(aT' In) In+ (a.T . Sn) Sn
-2 - A o P Y - - -
& = (6 -0 )OO +(6 1)L +(6_-S)S
n n n n n nn n n "n

Hence, the nth gyro drift rate resulting from mass unbalance is

- o - - .
Wy T UIn (aT . Sn) - US (aT . In) (3.9)
n n
where
L
UI - H_ (6n ) In) (3.94) -
n n
m, =
Us =T (én . Sn) (3.9B)
n n
Anisoelastic gyro drift rate results when the gyro is placed in an
acceleration field, In this environment the gyro will deform., The result-
ing mass shift is obtained as m_ -:n' where
= - = - - -
€ = Kon(a.T . On) On +'K1n_(a'T . In)_ In + KSn (aT . Sn) Sn (3.10)

-11-
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The constants KOn’ Kln, Ksn are elastic coefficients of the n~ plat-
form gyro. The resulting residual torque is
- - -
Tn = m_ e Aag (3.11)
Substituting equations (3. 11) and (3. 10) into (3. 6) gives
— — - g
wAm = ZKn (aT . In) (aT . n) (3.12)
where
KIn - KSn
an = —Fg (3.12A)
n .
Kn = anisoelastic drift rate coefficient.

for the nth platform gyro

The gyro drift rate, WA is referred to as the anisoelastic drift rate of
the nth platform stabilization gyro. The gyro is said to be isoelastic if

KIn = Ksn. This gyro design goal has not yet been achieved.

The resultant gyro drift rate is denoted by - An expression for

°p is obtained by adding the fixed, mass unbalance and anisoelastic drift

rates, The result, for the nth platform gyro, is
op = Rn + UI ag - UI ay + ZKnaI ag (3.13)
n n n n n n
where
_ —.
ag = ap - Sn (3.13A)
n
- —
aIn = aq - In (3.13B)

The above discussion applies to conventional ball-bearing floated plat-
form gyros. Gyros utilizing other designs may have internal acceleration-

dependent torques that are not calculated above.

-12-
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There are many ways that three SDF gyros may be oriented on the
platform. One such orientation is given in Table 3.1, where it is assumed

that the thrust acceleration is always contained in the X-Z plane.

Gyro 1 ‘ Gyro 2 Gyro 3
- o
X Direction Il gZ cos a + 62 sin a O3
irecti 5 1 5
Y Direction 1 I2 3
Z Direction —O1 —SZ sin a + O2 cos a I3

Table 3.1 - An Optimum Gyro Orientation

The following features of Table 3,1 should be noted:

a) The input axes are orthogonal and define the gyro coordinate

system.

b) The SDF gyros 1 and 3 could be replaced by a single 2-DF gyro.

-
c) Since an is in the X-Z plane, there is no anisoelastic drift rate

regardless of the value of the angle a.
’ -
d) The platform could be rotated about the j direction through an

angle B without introducing anisoelastic drift rates,

The gyro orientation given in Table 3,1 successfully eliminates
anisoelastic drift rates, but not mass unbalance drift rates. It is possible
to choose the " agles a and B to minimize these latter drift rates, When

this has been done the gyro orientation is said to be optimized.

-13-
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IV. POSITION AND VELOCITY DETERMINATION

A ballistic missile guidance system does not always require explicit
information as to position and 'velocity, as in the case of the Q-guidance
method proposed by MIT. The guidance methods to be discg\ssed in this
memo, however, require that the inertial position vector, R, and the

inertial velocity vector, R, be determined. The equation to be solved

is
N - -
—
R (t) = g(R) + am (t) (4.1)
where
-
g = gravitational acceleration
Y
ap = sensed acceleration (measured by the
accelerometers)
IA
R = inertial acceleration

Equation (4.1) is integrated in the IGS computer., The block diagram
shown in Figure 4.1 indicates the steps in the solution, The following

notation is

KN lﬁ
R o
o
-3
2 N t N t =
—L— add R - / —-——Ii——- f »1 add ——B—b
o o
g
Gravity Compu- ~
tation o -
- g =18 (R)
Figure 4.1 - Position and Velocity Determination

-14-



used in Figure 4.1

o]
1

initial position vector of missile

- 2

initial velocity vector of missile

Equatinn (4.1) is solved in the computing coordinate system. If the
accelerometer coordinate system is not the same CS, a transformation of

‘a\T to the computing CS must be included.

Division and square root operations are slow processes for many
IGS computers. Hence, the direct computation of E is a slow process

when B has the form

= GM
g = - —-3- ﬁ (4- 2)
r .
where
—
R = missile position vector measured from the

center of the earth

r = \]’ﬁ-'ﬁ:\]x2+Y2+zz=|'ﬁl

: =

In equation (4.2) the position vector of the missile, R, is expressed
in a coordinate system with origin at the center of the earth. At worst
this requires a simple transformation to the computing CS. The gravity

function may be expanded into a Taylor's series of the form

2= -(R+ io) F(X, Y, Z) , (4. 3)

where

x2 +c.z® + ¢c

F 4 5 6

Xz

it

Co v C1X+C2Z + C

A complete description of this expansion is given in Reference (5).

-15-
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In equation (4.3) it is assumed that the nominal thrust acceleration
vector is always contained in the X - Z plane. The above computational
form for g includes oblateness terms while the form given in equation
(4.‘2)‘does not. The coefficients, Ci’ required by equation (4.3) are
obtained by Taylor's series expansion about a downrange expansion point.
Other methods for mechanizing the gravity computation exist, For example,
equation (4.2) may be calculated using difference equations. In somecases,
for a short high-altitude burn it will suffice to use a constant vector for

gravitational acceleration.

Most of the accelerometers currently used in IG systems are integrat-

ing accelerometers. That is, the output of the accelerometer is thrust-
-

velocity, VT’ ~where

When this is the case the navigation loop shown in Fig\ire 4.2 may be used.

-—
Vo
From integrating
accelerometers
- t -
‘ﬁ " Gravity Computation .
8 e .Y E—— g - »] add R
g =g (R)
o
e
tR -
o

add f
o

2
R

o

Figure 4.2 - A Possible Navigation Loop When an Integrating
Accelerometer Is Used,

-16- | :
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The initial position and velocity -ﬁo and -.Ko' required in Figures4.1
and 4.2 are readily determined when the misesile is launched from the
earth. In some space missions a second burning period may be required
after the coast (ballistic free flight) phase. The determination of initial
conditions for this second burn may be made in two ways, Since g is the
only external acceleration acting on the missile during coast, it is only
ﬁeceuary to integrate g {twice) during the coast period. When this
method is used the accelerometer inputs in Figures 4.1 and 4,2 are opened

8o that accelerometer bias errors are not introduced,

The second method requires that the six initial conditions at the start
of the second burn be predicted using first-burnout position and velocity
information. It is also necessary to predict the time of free flight, tego
in order to provide an engine start command for the second burn. It is
shown in Section V that at first burnout, the miuiie will satisfy four
guidance restraints at the start-point of the second burn. This start-
point is the "target" for the first burn. When the four guidance restraints
are X = XT, Y = YT' Z = ZT' Z = é’T' then three quantities remain

to be determined. These may be predicted using expressions of the follow-

ing form:

Xp = Xpn + C),8X + C,AY + C ,AZ + C At

Y, - ’.f"m‘\: + C, 8X + C,,AY + C,,AZ + C, At

tye = tn * C4 AX + C,,AY + C,,AZ + C At -
where

AX = X - XN -

AY = Y - YN

AZ = Z - Z

At =t - N

-17- -~
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-

nominal position and time at first burnout

it

AN YN Zne Wy

X, Y, Z, t

actual position and time at first burnout
XTN’ YTN = nominal velocity components at the target

t

£f nominal time of free flight

When the above method is used the guidance computer (except the
clock) as well as the accelerometer and accelerometer electronics may be

shut off, This results in a saving of power, and therefore weight.

-18-
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V. THE REQUIRED VELOCITY VECTOR

A ballistic missile engine whose thrust may be controlled in magnitude
as well as direction is said to have thrust magnitude control. Ballistic
missiles with this feature can be made to fly the nominal desired time-
specified trajectory, That is, such missiles could be controlled to burn-

out at a prespecified position, velocity, and time,

It will be assumed in this memo that the ballistic missile engines used
do not have thrust magnitude control. However, it will be assumed that
the thrust and mass magnitudes are reproducible within a few percent,
These ballistic missiles can then be steered only by pitching and yawing
the thrust vector. With this type of control it is possible to steer the
missile velocity vector to the value specified by some function of missile
position, i, and time, t, This desired velocity function will be termed
the required velocity vector, -V\R = T}R (ﬁ\, t). This vector function is
obtained on the limiting assumption that an impulsive thrust engine is
used. That is, at any time during the powered flight, it is assumed that
a velocity increment, A_\-I'L, may be added such that

-_—

. W
R + AV = VR

This is referred to as a limiting assumption because additional guidance
constraints may be imposed when the actual finite thrusting capabilities

of the missile are used in the analysis,

The limiting assumption will be made in the analysis that follows.

Then the specification of four general guidance constraints is necessary
— —
in order to uniquely determine VR (R,t). A consideration of Figure 5.1
will help to clarify this matter,
o
-19- .
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L —— —_tffA\ Trajectory A
/

_ ~ ~

v / ——— the, ~ Trajectory B
£ ~ N J y
Rp V;{, —_ A ~ _ N\
A — | SE— S Su— \
—_— tep=t,,, e~
- ffA \

v, 7 =~

A RB X Desired Target,

R

Surface of the Earth T

Figure 5.1 - Three Coast Trajectories, All Hitting
the Desired Target

The three free-flighttrajectories shown in Figure 5.1 all "hit" the de-
£ each of the three

trajectories satisfies the three guidance constraints that

sired target, That is, after a period of time, t

X = X

T
Y = YT
Z = ZT

Consider the two trajectories originating at point A. In order to specify

the required velocity vector at point A, an additional guidance constraint



must be imposed. For example, it may be required to hold the time of

free flight to a constant value, as is done in trajectories A and B,

Equally well, any one of the following restraints could be prespecified:

a)

b)
c)
d)
e)
f)
g)
h)

Burnout veloéity magnitude

Burnout vertical velocity

Burnout velocity vector elevation angle
Burnout energy

Burnout angular momentum magnitude
Velocity magnitude at the target
Vertical velocity at the target

Total time of flight from liftoff to the target

In addition to the above, many more restraints which are desirable

could be listed.

It is not necessary to include hitting the target as three restraints.

- -
A required velocity vector field, VR (R,t), can be found that will cause

the free-flight velocity vector to satisfy the following four conditions:

1) X = X'I‘

2) " Z = ZT

3) Y = 'YT

4) Constant total time of flight from liftoff

The tes kT' iT' and YT will all vary in the preceding example

depending on the burnout time and position vector. Another interesting

example will be included. It is possible to steer the missile so that the

velocity vector at burnout has some desired value. In this case the four

guidance restraints are the following:

~21-
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) X = X
2) Y = Y,
N oz =z,
4) ty = 0

In this example the burnout position and time will vary depending on the
off nominal performance of the propulsion system, etc. The above ex-

amples serve to illustrate that all essential guidance information is

—A
included in the specification of the required velocity vector, VR . This

follows from the fact that all missiles can be controlled (theoretically) .
such that they will have exactly the required velocity vector at burnout.
They will therefore satisfy the prescribed guidance restraints. Any two
missiles that burn out at the same vector position and time will have
identical free-flight trajectories, Note that the missile must be steered

-—d — —
in pitch in order to achieve VR = VR (K, t).

The required velocity vector is sometimes discussed with a meaning
different from that described above. For example, the four guidance

restraints may be the following:

-

) —2
1,2,3) R = R'T

4) Arbitrary vertical velocity, Z, at burnout,

Note that the fourth restraint, above, is quite different from condition

b) previously discussed, where it was required that the burnout vertical
velocity be steered to a prespecified constant. Condition 4) is use&
whenever it is required to pitch the missile according to some preassigned
pitch program.. In this case the missile vertical velocity, i, will vary

according to missile performance. The variation in Z may be indicated
by writing the guidance control function as:

g
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V, = V_ (R, Z, t) where Z is arbitrary,
R R
—_ : :
Using VR in this form leads to satisfactory performance for missiles
that are designed to impact on the earth, Note that only three guidance
— -
restraints may now be imposed. That is,at R = RT along the coast
trajectory, the coast time of free flight will necessarily vary with
missile performance, This memo will not further discuss guidance
—h

systems using V = VR (R Z t). Only guidance systems using VR

= (R t), wh1ch require pitch steering, will be discussed,

Some simple examples dealing with requn'ed velocity vector calcula-
tion will now be given. The calculation of VR involves only the free-

flight equations of motion, On a flat earth these may be written as

N
R = g (5. 1)

-t
where g is a constant. The solution is

= =2 s 1 =2
R =R_+Rt+ 5 gt (5. 2)

s

In equation (5. 2), ﬁo and R_ denote the burnout conditions. 1Itis now
required to find the burnout velocity that will cause the missile to coast
to the target, R (t), after a time of free ﬂlght, £ Since it is assumed
that the missile can burn out at any position, R equation (5.2) can be
written as

- __\ - 1 o 2
RT(t) = R+VRtf£+z-gtff (5.2A)

—
The target position is written as RT (t) to indicate that the position of
—_—)

the desired target may vary wath time, The solution for VR on the flat

earth is then

A
N R(t) - R
_ 0T _1la
VR (R; t)r = ——-————t -2— g tff (5.— ZB)

ff
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If the t;, is now chosen as the fourth guidance restraint, then this pre-
specified value (a constant) may be substituted in equation (5.2B) resulting
in the desired expression for \—;R' If the fourth ggidance restraint is that
the total time of flight should be a prespecified constant, T, then

tff = T -t should be substituted into equation (5.2B).

It may be required that the vertical velocity of the missile at the

target be some prespecified value, ZT’ Then, when By © gy =0,

= . ft
ZT - VR_Z + gtff \g [a VI 32 Secz) (5. 3)

When sz is eliminated from equatioﬁ (5.3) and the Z-component of

equation (5.2B), an expression for time of free flight is obtained as

. . 2 '
 Zp- ’\lzT -2g(2, - 2)
ff g

t (5.4)
The desired expression for required velocity is now obtained by substituting

tes from equation (5.4) into (5, 2B).

-
In realistic cases VR must be obtained for oblate spheroids. This

solution can be obtained with sufficient accuracy by analytical methods,
However, these solutions will involve square roots and divisions which
are difficult operations for many IGS comouters. Experience indicates
that a loss in accuracy results when these analytical solutions are expanded

in power series expansions. Hence, curve fitting techniques (least squares)

are employed using high-speed digital computers. It is desired to find

-— —h
VR (R,t) in the following form:

VR = 290 * 219
X

AX+a2 AY + a,,AZ

0 30

+a, At+a, . AX% +a._ AX AY

40 11 12

2
'+-oo +a44At (5'5)
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Similar expansions are obtained for VR and VRz' There are 15 terms

in each expansion. In equatioﬁ (5.5),

AX = X - XN
AY = Y - YN
"AZ = 2 - ZN
At =t -ty
XN' YN' ZN’ tN = nominal (standard) burnout position and time
a5 = guidance constants, to be determined

The a,, in equation (5.5) are analogous to partial derivatives, as

L. o8X
10 X Burnout

'S
212 T 3X6Y |.Burnout

except that these "partial derivatives" are obtained by least squares
techniques. Note that a,, in equation (5.5) is the nominal
value of the X-component of the burnout velocity vector or

a = V

00 RxN

No third-order terms are given in equation (5.5). In general, the
listed terms have been found to result in negligible fitting errors over

the expected burnout dispersion box,

The burnout dispersion box is defined by the expected variations in
AX, AY, AZ, and At at burnout, These variations result from varia-

tions in the thrust, specific impulse, initial mass, etc.
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Nominal Coast ~N
N

Trajectory

Figure 5.2 - Nominal and Ncnstandard Required
Velocity Vectors at Burnout.

The dispersion box is shown in Fig\ire 5.2 along with nominal and
nonstandard required velocity vectors at burnout. The size of the
burnout dispersion box depends principally on the propulsion and control
system tolerances. The shape depends on the guidance restraints chosen

and the type of missile steering employed by the IGS,

In order to determine the a'ij in equation (5.5) by least squares pro-
cedures, it is necessary to have input data. To obtain these data, it is
first necessary to estimate the size and shape of the dispersion box.
When this has been done a large number of points may be designated with-
in the dispersion box either at random or by some systematic procedure,
Any one of many iterative techniques may now be used to determine the
required velocity vectors at the designated points. With some techniques,

-2
as many as 15 machine runs may be required to determine VR at one

=26 -
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point. By definition, the resulting vector field, Vp (R, t) must satisfy
the four chosen guidance constraints, This vector field is then the input

data to the least squares routine,

A second method for obtaining these data has been used with success
at STL. This method has the advantage that iterative techniques are not

required. ‘Assume that the four guidance restraints are

— —
1,2,3) R = R
4)X = Xp

Then ?T and iT (as well as the tff).will vary. The free flight may -
be started at the target position with X = XT. Ru?s may nc:w be made,
integrating backwards. These runs require that YT and ZT be

varied in amounts depending on the size of the expected dispersion box.
When.the missile has coasted (backwards) for the nominal time of free
flight, the quantities i. i\. and tffN are recorded. These data are also
recorded, along the same free-flight trajectory at the times

t = tﬁ.Nﬂ:nAt (n = 1,2, ..., N)

where At is also dependent on the size of the dispersion box. If N = 3,
then seven sets of data, i. e., seven required velocity vectors, are obtained
for each run, Then from the nominal and two variations on Y"-T and iT’
35 sets of data will be obtained, which may be input into the least squares
routine, Note that it is desirable to define all guidance restraints at the
target, when using this method. If the velocity magnitude at the target
were constrained, then ).(T could be solved for and the above discussion
applies, If the total time of flight, T, were constrained (as condition 4)
and AZ,_. The

T T
quantity Atff, appearing in the expansion would then be eliminated using

it would be necessary to vary A}.(T, as well as AY

T-t = tes
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or - At = At = t,, -t

where At = t -t

Methods for steermg the missile such that R will be controlled to
be equal to VR (R t) will be presented in the next section, Note that
such control is equivalent to controlling Vg (R R t) to zero,
where

— - 2N
vg = Vp -R (5.6)

-
The quantity Vg is used as the basic guidance control function in the

MIT guidance system.
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VI. BALLISTIC MISSILE STEERING METHODS

A ballistic missile is steered by controlling the d‘ire.c‘tion of the
thrust vector. For flight through the atmosphere, the missile must be
steered so that a gravity turn is approximated. A gravity turn results
when the missile angle of attack, and hence aerodynamic forces normal
to the missile axis, vanish. This requirement is made because normal
forces of this nature set up bending moments along the missile axis that
could cause the missile to break. It is shown in Apbendix B that a

' -
gravity turn will result when £ is chosen as

s = - - - e
E~R - Wi AR+ W
- -
where R is the missile inertial velocity, wp is the earth angular
velocity, and W is the wind velocity. The wind velocity is usually

neglected.

It will be assumed in this section that the commanded attitude turning
rates required for the gravity turn are obtained from a simulation incor-
porating the above equation. The required turning rates may then be
printed out and stored in a missile programmer. Alternate methods for
accomplishing the gravity turn have been studied. For example, the
required attitude may be expressed a8 an empirical function of actual
missilé position and velocity. This procedure minimizes the dispersions

that result when closed-loop guidance steering is initiated.

The remaining paragraphs in this section will assume that the gravity
turn has been completed and that the missile is out of the atmosphere.

Hence, no aerodynamic forces will be considered to act on the missile.

Ballistic missiles generally have long, slender configurations with the
thrust chamber gimbal located many feet away from the center of gravity
(C.G.). Since the consideration c¢f missile control systems would tend to
mask the guidance problem, the following discussion will be limited to

point mass missiles. Such missiles are approximated by cylindrical

*The symbol ~ denotes parallelism.
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shapes with the thrust chamber gimbal located at the C.G. The direction
of the thrust attitude vector will be denoted by E in this section. The
IGS is also assumed to be located at the C. G. The purpose of the

IGS is to determine a commanded value of the thrust attitude vector,

?C‘, such that the missile velocity will bé controlled to the required

velocity vector.

Steering methods will be developed in this section for point mass
missiles. These methods will be extended in Section VII to actual missiles,
where the differential equs,tions relating E and '€c _‘will be obtiined.

It is sufficient for the present purpose '1.;0 note that § will lag §C as a
result of control system reaction time, engine gimbal inertia, and any"
limiting that might be present. It is assumed here that the control sys-
tem response is rapid and that these lags may be neglected. However,
thrust misalignments are considered to e:_cést. ang integral control terms
are added to reduce their effect. Hence, £ and gc will be treated as

identical quantities in this section.

The problem of steering the missile may be approachéd in many
ways., The solution to this problem is not unique. The methods pre-
sented in this section have been found to be satisfactory, but no claim is
made that these methods are optimum. A short discussion of the nominal

trajectory follows,

Trajectories for nominal missiles are usually generated by choosing
-

a thrust attitude, ‘§N(t), such that

a0 A

D

b) Minimum propellant is wasted
c) Heating constraints, etc., are satisfied
d) Gravity turn is flown through the atmosphere
It may reqhire many runs on a Ef.rge digital computer of the powered-

flight simulation to determine F,N (t) subject to the listed restraints,
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The nominal thrust attitude is determined from liftoff in the powered-
flight simulation., Note that gN will change in dxrection except for verti-

cal flight. - It is customary to define a constant vector pN such that
Y N ‘
gN (t) * pN =0

The plane defined by _SN is said to be the pitch plane,

Since guided flight in a vacuum will be assumed, only two accelera-

tions will act on the point mass missile, The sum of the linear accelera-

tions
N
[N ] __) —5
R = g+ aq
A -
= g+ aT§ (6.1)
a2
where R = resultant inertial acceleration of the missile C.G.
aq = magnitude of thrust aoceleration (= thrust per unit
mass)
—! .
£ = unit vector in the direction of the thrust vector

The ballistic missile must be steered such that R —vV (R t) at burn-
out for nominal as we__l\l as nonstandard missiles. The veloctty to be
= .

— -
gained, Vg = Vg (R, R, t) is defined as

- . > Y

Vg = VR (R,t) - R (6.2)
Hence, a commanded thrust attitude vector, ?c (t), must be found such

that all three components of ?f\ vanish at burnout. At the precise time
when ;; = 0 the missile engine will be cut off. The missile will then

coast to its target satisfying the four guidance restraints.

It is convenient to choose the computing coordinate system set of

basis vectors as follows:
-
i = parallel to the nominal thrust attitude vector at

burnout
-31-
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, i.e,, normal to the pitch plane

i = Py
-— -_—
k = i/\j

The origin of the inertial coordinate system may be chosen at the center
of the earth or at the launch site. The velocity of the missile will be

= L S . W L N

R =Xi+Yj+2Zk
Pitcl} commands may then be based on é » Yaw commands may be based
on Y , and engine cutoff commar}gs based on ).( . These components
are defined by equation (6.2), and VR is obtained by explicit computation
or by using one of the methods given in Section V. It will be assumed
that the clza.nge. in thrus.t attitude is sufficiently small that cross-coupling

between Xg, Yg’ and Zg may be neglected, .

When the thrust attitude, -§-: is specified, the motion of the missile
C.G. is obtained by integrating equation (6.1). Since ? is a unit vector
the specification could be given in terms of the pitch and yaw components,
§z and §Y. The epeciﬁf:a.tion co‘uld also be given in terms of the pitch
and yaw attitude rates, §z and §y. It is assumed that the commanded
roll attitude rate is zero. The following paragraphs will discuss the
determination of the pitch attitude, A corresponding discussion (not

presented) will be obvious for the yaw channel,

The pitch attitude of the thrust vector, gz, must be determined
such that V 2 -+ 0. This result would be obtained if ng were a solution
of any one of the following six forms:
1) -Z + KV = 0
gz

2) ng+Kng = 0

.0 t
3)* -Z + KV +Lf V.. =0
gz gz
to

3 t t
*It is understood throughout that[ ng = f ng (r)dr.
to

o
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g ommay

4) ng+Kng+Lj vgz = 0 : (6.4)
to

5) -2 + Kvgz + ngz = 0

6) vgz + Kng + ngz =0

where ng =V - Z. Many other forms, including cross-coupled forms,

could be added ﬁ)zthe above list, but the above six will suffice for the pre-
sent discussion, The gain functions K and L are chosen to insure
stability and satisfactory transient response. The presence of the ng
term in all six forms assures that V z will be controlled to zero.
Forms (1) and (2) are the simplest, form (2) being preferred because
vgz will also vanish at burnout. In practice, it is found that the presence
of thrust misalignments, lags in the control system, etc., result in
steering errors., These errors may be significantly reduced by intro-
ducing integral control terms as in forms (3) and (4). In these forms,

t, designates the time at which guidance is initiated. Forms (5) and (6)
are equivalent to forms (3) and (4) and are used when the thrust attitude

rate is to be commanded,

When form (4) is used, g, is obtained by eliminating Z using

equation (6.1) as

Z = gz + ang (6.5)

Then

t .o

Wgz+L£o vgz+sz -8,

a

rts (6.6)

amad
Equation (6.6) may be simplified when VR (R, t) is chosen from a
restricted class of vector functions, The restriction rejuires that when-
-
ever the missile engine is shut off, with Vg = 0, that Vg will continue

tovanishduring the coast period that precedes arrival at the target,
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Guidance constraints of the type a) - ¢) on Page 21 will not result -
in expressions for \?R (ﬁ, t) that satisfy the class restriction. Con-
straints d) - h) will satisfy the restriction. In gemeral, the class restric-
tion is not a serious limitation. For example, whenever the four guidance
restraints are defined at the target, the restriction will be satisfied. The
remaining analysis in this report will assume that VR satisfies the class

restriction.

- S :
When the guidance restraints are chosen such that VR (R,t) satisfies

the class restriction, it follows that
- KN
g=Vp Rt ¥V, =R 6.7)

The following expansion in partial derivatives is valid in general

- Y

N 3 - A A

VRr =Z aol R, + ot (6.8)
a=1 0X

where

R1=X, R2=Y, and R3=Z

M
When Vp satisfies the class restriction, equations (6.7) may be substi-

tuted into (6. 8) to obtain

3 5V v
N BVR 8VR _
> - Z = Vee ¥ e (6.8A)
a=1
where
VRl = VRx’ VRZ = VRy’ and VR3 = VRz
-
3VR
Elimination of 3 from equations (6.8A) and (6. 8) gives
O A
Ve - g =-Z —= Vea (6.9)
a=1
-34-



p———

Using equation (6. 9), equation (6.6) may be written as

3
t av
, Rz
ané =KV,+L[ v - v (6.10)
Tz gz Jio 8% g-;l ox® 8@ ‘

Note that equation (6. 10) could bé simplified if equation (6.4), form (4),

had Been written as

i t 3 Ve,
V. +KV +L[ v Z v =0  (6.11)
gz gz gz ax % ga

to a=1

This simplification will not be made in this section because of the com-

plex character of equation (6.11). However, it is felt that constants K

and L for the pitch (and yaw) channels may be found that will cause

V. _«+0 and V__-+0. Thenthe V__ terms in equation (6.10) will not
gz gy ga

be required.

When a missile is steered according to equation (6, 10) an excessive
use of propellant may be experienced, since the nominal trajectory will

not be reproduced. The nominal pitch thrust attitude is obtained as

If §z were evaluated along the nominal trajectory, it would generally be
found that
€, # tNa

- .
By construction of gN it follows that any such deviations can only result

in the failure of equation (6.10) to satisfy the nominal trajectory shaping
restraints, with the exception of the first (—RA—'—_\-;R). This defect in equa-
tion (6. 10) can be remedied in two ways, both essentially equivalent. A

discussion of this procedure follows.
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The reason why equation (6. 10) causes the nominal missile to be
steered (in pitch) is that equations (6.4) are not satisfied by the nominal
missile. Equations (6.4), however, can be easily generalized so that
they are satisfied by the nominal missile. This is done by adding a
f'orcing function, F (V x), to the right-hand sides. The forcing function
is obtained by evaluating the left-hand side of equation (6. 4), form (4),

over the nominal trajectory, to obtain FIZ\I as

¢ :
N _ .
Fz = vgzN + K ngN + L‘/tro ngN (6.12)

The nominal value of the X-component of the velocity to be gained, Vng,
is also obtained. Then FI: is expressed as a function of vg'xN' The
quantity Vng is chosen as the independent variable for the F-function
because V__ will tend to zero in a smooth fashion as the missile gains
velocity. At burnout vgx = 0; hence, ng—> 0 as required. In order to

retain computer simplicity, FI: is chosen in the form

N _ 2
Fz = Cl Vng + C2 Vng , (6.13)
where C1 and C2 are trajectory shaping constants. These constants
should be obtained such that a good fit to the nominal trajectory is obtained
in the burnout region. The curve fit should also include the guidance
initiation point in order to minimize pitch commands when the guidance

loop is closed, -

Although quadratic terms are indicated in equation (6.13), in some

cases linear terms will suffice; in others cubic terms will be called for,

This choice depends on the precision required in duplicating the nominal =
trajectory. Only a small amount of propellant waste is allowed for

missions requiring maximum burnout energy. In such missions every

additional X pounds of propellant required represents the loss of an

additional physical experiment.
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The forcing function, F, (v x)’ to be added to the right-hand side of
equation (6.4), form (4) is then

) =C,V_+C, V. (6.14)

FZ (vgz

where C1 and C2 are the same constants used in equation (6. 13).

Equation (6.4), form (4), is then modified as

. t

V +KV +L \4 = F_(V_)) (6.15)
gz gz to B2 z ' gx

Equation (6. 15) is now satisfied by the nominal missile,and V e 0 as
required. The yaw and pitch attitudes to be commanded, £ and §z,
may now be obtained following the procedure indicated by equations (6. 5)
to (6. 10), The result is

¢ 2 evg,
agby = KV, +L ft ) vgy-;l —= Voo - Fy (V)
(6.15A)"
t 3 BV,
apk, = KV, + LL Ve -Zl T Vga T Fa (Vg
a=

where it is assumed that the pitch and yaw channels are identical; hence,

the same gains K and L.

A Becond procedure will now be mentioned for shaping equations
(6.4) so that these equations are satisfied by the nominal missile, Again

let equation (6.4), form (4), be used as the example,

»®_ .
Note that equations (6.6), (6.10), (6.15A), and (6.18) can be simplified
if the computing coordinate system is chosen such that

23 - S
VR-g)A1 =0
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The desired forcing function is

t
Nn _ L ]
F, = Vo,n+tKVo N+ Lf VN
1 {¢}
Hence, form (4) could be written as
v * v oo (6. 16)
Vg PRV L[V, = .
to
where
v * v v (6.17)
gz gz  gzN )

The quantity ngN may now be expressed in powers of Vg*N as was.
done in equation (6. 13) for FI:. Note that this method requires that
fitting errors in the integral and the derivative of ngN also be mini-
mized, When this technique is used the expressions for §Y and §z

are obtained as

3

t ' A
* * Ry ¥
a§ = an. € +KV  +L f v -y —Xv
Ty Tn yn gy to gy ; ax® ga
3 (6. 18)
t ov
* * Rz *
= + KV + L v - v
ang a'Tng’zn gz -/to gz g ox® B¢
where V* V* d V* V* defined i uati (6.17)
: = an = re define 8 in e ion (6. .
gl = gx g2 'gy % as ineqia
That is
-k - - .
V = V ~- V 6. 19
g g gN ( )

%*
Since V .-+ 0 at burnout, it follows that the variation between aT and

apy may be neglected.‘ Then equations (6, 18) become
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K o+ . L[ty 1 o Vg
e = € + v 4+ = v - .___.x v
y yN'"ap ey Tap) Y T ax®
(6.20)
3
t ov
K * L * 1 Rz %
gz = £ +=V — V- E v
zN ' a gz - a Bz a a
T T to T 1 X ga

-
Equations (6. 20) completely determine gc since it is only necessary to
specify two components of a unit vector, because equations (6. 20) could

also be written as

« L[t = 2 WV Ry %
b= gyt Kvgy+af Vi ma ) —X vE
T T. to T 5 X ,
3 v (6.204A)
8 = K * —L'j o1 Z _ Ry V* '
Nt a - an 1 ax® ga

where ( - ¢N and 9 - 9N denote small variations in the pitch and yaw

attitude angles about the nominal values,

Equations {6.15A) and (6.20) may now be used to steer the ballistic
missile. The quantity Vgx will furnish the engine shutoff command.
That is, when V x- €2 command will be issued to shut off the main
engine. The parameter € is included to allow for the expected residual
impulse of the main engine, as well as the impulse of a vernier engine,

if provided. The vernier engine will be shut off when vgx =0,

*
Since vgx ® 0, equations (6.20) can be written in vector form as

3 -
v
= Y — % t o ) *
E~E + X2V L [V -_1_2 R (6.21)
N ar '8 ag g r & px®
to

where the gain constants K and L are also indicated for the roll
channel. This is done simply for mathematical convenience and is accept-

able since it is not planned to steer in roll, The symbol ~ is used in
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equation (6.21) to denote parallelism. The X axis was chosen along
EN at burnout. Hence, if EN is a constant vector, it follows thﬂ: equa-
tion (6. 21) is normalized except for second-order terms. Wh:n §N is
not a constant vector, it is desirable to define the quantities V; such
that

AR T (6. 22)
g g °N g °N )
SRS Y -
=§N/\ Vg/\&N

- ~—
By construction, Vé is the sum of the two components of V_ normal to
- - =
the thrust attitude vector §N. The component of Vg parallel to £
will be denoted by e, hence

(6.23)

<l
I

Then e EN + V;

g

Both i\';* and _\7; vanish along the nominal trajectory and are identical

if EN is a constant. Hence, equations (6.21) may be written as

-
3 '€+KV‘T+Lj’tv‘T ‘iw‘"‘* (6. 24)
N ar B ap o g a.I,_l ax® &¢

Equation (6.24) may also he used for missile steering. The main
engine cutoff signal is e, defined by equation (6.23). The advantage of
this representation is that it is independent of a particular coordinate

system and is free of cross-coupling errors.

- ‘>
The thrust attitude rate, £, may be commanded in place of §. This

expression may be derived by writing equation (6.4), form (6), as

"\7?+K'\.'r' +L_\°r. 3 6.25)
g g g—q(e) (6.25)
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The inhomogeneous term q (e) is added so that equation (6.25) will be
satisfied by the nominal trajectory. That is

W -

- - . . -
q (o) = VgN+K vgN +L vgN (6.26)

where e denotes the engine cutoff signal. Equations (6. 1) and (6. 2)

may be differentiated with the result

LI - -3 . -
R;g+aT§+aT§
Vg:VR-R

Using the above results, equation (6.25) becomes

-t

. -—d
aT-€+aT§ = VR-g

s )t —-— - -
) +tKV +LV_-q(e) (6.27)

. = —
The quantity ar € may be absorbed in q (e). Then equation (6.27) will
specify a commanded turning rate that will cause {;g -+ 0. Since,
PULEN -

vg'—'VR"E-aTg

equation (6.27) may be written as
—E . a - N Y N Y N
apt + (a.T-l-KaT) £ = LVg +K(VR- g)+ (VR -g)-qe) (6.28)

-—
The result of multiplication by £ (vector cross product) is

- — - - — -
3w = Lg‘,\Vgi-E,,\(VR-g + -
- (6.29)
= - Y - -
KEA vR-g)-g/\q(e)
where W is the commanded angular velocity of the thrust attitude vector =
defined as
N 2
w = EAE (6.30)
-41-
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The steering equation (6.29) is one form of the so-called cross-product
steering., This equation may be simplified using equations (§. 9) and
choosing the coordinate system suggested in the footnote on Page 37.
Other simplifications will result when suitable cross-coupled terms are
added to equation (6.4), form (6) as discussed in connection with equation
(6.11). A stabilify analysis should then be done on the resulting form,
Finally the steering equations should be simulated using a closed-loop
guidance simulatid?—; This last step is necessary to verify that only |
negligible errors (Vg # 0 at burnout) result when nonstandard missiles

are steered,

-42-
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VII. BALLISTIC MISSILE CONTROL SYSTEMS

The preceding discussion was restricted to point mass missiles,
where the thrust chamber was located at the C.G. Since this is not the
case for long slender ballistic missiles, it is necessary to consider
actual missile dynamics. Only rigid-body missile dynamics will be con-
sidered in this section. Aerodynamic forces will not be treated since it
is assumed that the missile is above the atmosphere. The forces acting
on the missile are shown in Figure 7.1. In Figure 7.1 the thrust attitude
unit vector is denoted by the symbol 3. In the preceding section the
thrust attitude was denoted by E\ This symbol will now be used to
denote the missile attitude unit vector. When this change in notation is

made, the linear acceleration equation becomes:

R =g+ab (7.1)

T
Two additional unit vectors are defined by the engine missile gimbal

. -
geometry. Pitch rotations of the missile occur about {; yaw rotations

about —ﬁ
A -
The relation between missile attitude, £, and thrust attitude will

now be found. This determination requires application of the turning

moment equation. The moment equation for missiles is

I=- 1o (7.2)
where 3 = torque about the missile C. G.
I = I(t)is the missile pitch or yaw moment
of inertia about the C. G.

2 d -~

w = a—t- W

- -

w = g /\g

Equation (7.2) neglects propellant sloshing effects; it is assumed that all
internal linear momenta are directed along the missile axis. In order for
equation (7.2) to have the given simple form, the roll angular velocity
must vanish. Then the roll moment of inertia is not involved. The torque
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Figure 7.1 - Forces Acting on the Ballistic Missile During
Powered Flight in a Vacuum.
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about the missile C.G. is

- A A S .
T =T ,(L€) = £ Ts 5§ (1.3)
Hence,
b 5AE =G (7.4)
where
_ T
Mo = (7.5)

Equation (7.4) is usually presented in component form. The pitch compo-
nent is obtained by multiplying (scalar product) equation (7.4) by -f to

obtain :

~;..
B 5°~ e

where
2
nsNE-T

The symbol % is used above to indicate that small angle approximations

pitch angle between 3 and E

o
o}
fl

magnitude of pitch angular acceleration

have been made.

The purpose of the missile control system is to steer the thrust
vector, i such that the missile will assume a reference attitude, §R.
The reference attitude is chosen to coincide with the desired thrust attitude
determined in the preceding section. The missile moment equation (7.4)
indicates the validity of this identi_ﬁca}tion. When -é # -g, the missile must
experience an angular acceleration, ?: The assumption that : is negli~
gible is acceptable when guidance steering commands only are considered.
That is, > is large as a result of control system commands rather than

S
guidance system commands. When & = 0, equation (7.1) reduces to

. o

R = "g‘+a,r‘€'
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This is precisely the same equation that was discussed in Section VI.

Expressions for the reference attitude were given in equations (6. 15),
(6.18), (6.20), (6.21),and (6.24). The latter is

= 2 K2t L (t21 Ve 2t
§R=§N+—-V + — v-_Z-——v
: ap g ap g ag oxe 8¢
to 1
—

The commanded thrust attitude, 5::' must now be determined to insure

-
that the missile attitude will be controlled to §R.

The commanded pitch or yaw thrust attitude is usually presented in

component form, the pitch component (typical) is

1}

5 6 (7.7)

oc KD (BR -6) -K

R

where

o
n

pitch component ‘of commanded

ocC 2 N
thrust attitude (® 6c . L)

KD, KR = control system constants
. - e G
8p - @ = pitch angle between £ and £ (€N R
. . -— -
) = magnitude of the pitch angular velocity (¥ w . §)

In equation (7. 7) the quantity 0 is usually measured by a rate gyro pack-
age located at some point in the missile structure that is relatively free

of bending frequencies.

The control system equations may be specified in a form thatis in-
dependent of any' particular coordinate system. Egquation (7.7) is readily
-46- ¢ -
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generalized to the vector form. The result is

P S Y S = —

5. A gax‘neAeR -K‘Rw (7.8)

Equation (7. 8) defines both pitch and yaw engine deflection commands.

The same constants KD and KR are used for both pitch and yaw since

fhese channels are assumed to be identical. In this section, as in the
precedmg section, the lag in the engine hydraulic system will be neglected.
Hence. the quantttxes 6 = ‘-6; will be considered to be identical.

When 6 = 5c is eliminated from equations (7.8) and (7.4) the resultis

S
w+

K K - oD '
e Rw-p.c D§/\§R~0 (7.9)

The pitch component of equation (7,9) is obtained by multiplying (scalar
-—) .
product) equation (7.9) by . The resuiltis '

0+p Kp 0+p Ky (8- 0p)%0 (7.10)

R D( R)"‘

Equation (7.10) is usually obtained by eliminating 60 = 50c between

equations (7.7) and (7.6). A consideration of equation (7.10) serves to
-
justify the form chosen for 6c in equations (7.7) or (7.8). The control

system constants Ky and K, must be chosen such that a stable system

R
with satisfactory transient response is obtained. In practice, missile
bending.and propellant sloshing must be considered so that a simulation is

required for this gain determination. Values of KD and KR may gener-
PO S— |

ally be found such that § - §_ with small lag.

R

-

1f some additional computer complexity is allowed, then §R “can be
2
calculated as in equation (6.27). The pitch component (typical) of 6c
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could then be written in the form:

6oc = KD(BR -0)+ KR(GR - 0)
o 2 LN —_ -
Fiquations of this type would control ? to ?R' as well as § to ER, a

desirable feature when the nominal missile is pitched over at a high rate,

Some additional relations, useful in guidance and control systems
-_ = 2
analysis will now be given. Since w= § AE, equation (7.8) may be

written as:
- - —

-t — X
5 N E=KEAby -Kp EAL (7.11)

-
Equation (7. 11) will now be assumed to define 6C, hence, the omission of

the & symbol. An equivalent fdrrn of equation (7.11) is
En [‘% +Kpbp - Kpé| =0 (7.12)
-—

The quantity in the square parenthesis must be parallel to £, hence,
- - =
Af= 8§ +K b - KRQ (7.13)
The normalization constant, A, may be determined by multiplying ( scalar
~—

product) both sides of equation (7.9) by £ . Then

A=Gc.§+KD§R.§ (7.14)

The result of substituting A into equation (7.13) is
-

5, = £ (5, . £)- Ky [gR - E (g g)] +KeE  (7.15)

d
When the small angle approximation is made, equation (7. 15) becomes

8% & - Kp (£ - £) + KR'g. (7.16)

-48- .
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. - -
Equation (7.16) gives a simple relation between 6c , £, and €R , that

does not depend on any particular inertial coordinate system.

- -—
A vector relation may also be found relating 6§ and £ . Equation

(7.4) is

u’g/\ =d (?A ) (7.17)

-
Since EAE = 0, the moment equation reduces to

-

- 1
En pc6+,§] =0 : . (7.18)

It may be shown that

£~
.

FYRT N (7.19)

€ |uri.

where w and w are the magnitudes of @ and 0. With this substitution,

equation (7. 18) becomes

g/\[pc6+&?_]=o (7.20)
(Y]

.
An expression for § may be obtained from equation (7. 20) using the

method of the preceding paragraph. The result is

T
3 w
6= £(6- )-p.—c o) (7.21)
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Since § and £ are unit vectors, it follows that
w

A
cos 61' = §. &
sin 61 e (7.2;)

where §; is the angle (combined pitch and yaw) between 'g and '€. When

the small angle approximation is made, equation (7.21) becomes

€}

N olPK)
6 & &~ o= (7.23)

The above discussion presented the basic equations of a missile
control system necessary for guidénce system analysis. The discussion
assumed that the missile attitude was to be controlled to the guidance
reference attitude ER . Only S1mp1e modifications are requ1red to adapt

- —\
the analysis to the case when E, is to be controlled to f or w to Wo -

A small complication could be added to the above ahalysis by includ-

-
ing the effect of the engine gimbal inertia. The relationship between §
—_ -— -
and 6C is used in this section as § = GC . A better approximation for
this relation is
t -kr
- t -
6o (t) kfo € 6oc (¢ -7) dr (7.24)

for the pitch (typical) component. In equation {(7.24) the parameter k is

related to the lag in the engine hydraulic system.
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APPENDIX A

Derivation of the Force Equation for Ballistic Missiles

A short nonrigorous derivation of the linear force equation is given
in this appendix. The sum of the external forces acting on a system of

particles equals the rate of change of linear momentum of the system or

N s a .
Y F o= (mv+ m V) (A-1)
where
m = mass of the missile
v = velocity of the missile
mg = ‘'mass of the escaping gas
.{'\g = velocity of the escaping gas

and the dot is used to denote differentiation with respect to time. It is
assumed in this appendix that the only external force on the missile arises

from gravitational acceleration; hence, equation (A-1) may be written as

- N LN — LN\
mg = mv+tmv+mv_+mv (A-2) -
g g g
—'-A L4 *
Now vg = 0 when the gas exits into free space, and m =-mg since the
total system mass is a constant. Thus
g = mv+m (v, -9)
mg = mv+m_ (v =v
¢ g'g
= m—v‘+mg C (A-3)
—
= myv =
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where

escape gas velocity with respect to the missile

al
il

(also called specific impulse)

.
—

BN .
T - mg C = missile thrust vector.

Equation (A-3) may be divided by m, with the result

BALY ' ‘ '
R.= v-= 'g“+?,r‘ (B-4)

where

wl

=\
I
m

: -53-




APPENDIX B

The Gravity Turn Pitch Program

The missile is steered through the atmosphere such that a "gravity
turn" is followed. This pitch profile is alternately referred to as either
a zero-lift or a zero angle-of-at‘tack pitch program., This program is
utilized in order to prevent breakage of the missile as a result of aero-

dynamic forces,

The aerodynamic forces are referred to as drag, B. and lift, .
The drag force is directed along the roll axis while the lift force acts
normal to the missile axis. The forces acting on the missile, for flight
through the atmosphere, are shown in Figure B - l, The point of applica-
tion of the resultant aerodynamic force is referred to as the center of
pressure (C.P,). The forces, T and B, acting at the C.P, are defined

as.

Thrust direction.

Figure B-1 - Forces Acting on the Missile for
Flight Through the Atmosphere
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where:

<l ol

-DE (B-1)
L EA(V, A ) | (B-2)
Va

CD Aq

Cy{e)Aq

direction of missile roll axis, a unit vector

velocity of the rhissile with respect
to the air mass

magnitude of VA

effective missile area

1/2 p VAZ = dynamic pressure

air density
drag coefficient

lift coefficient

— -—

angle of attack (VA cosa=V, - £)

The drag and lift forces are sometimes defined as acting along and
— -

normal to VA’ rather than §

taken to insure that the definitions are consistent with the data.

The axial strength of the missile is greater than the transverse

strength, Hence, the normal forces (lift) must be minimized for flight

through the atmosphere. Otherwise the aerodynamic lift forces would

produce bending moments that could break the long, slender missile.

-55-
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. -
Note also that when L # 0, it is necessary to choose the engine thrust
-
direction, 8§, to prevent the missile from rotating. The aerodynamic

pitching moment is cancelled by choosing

— - -
Ld = §/\(6/\€)1 T

B

- [3-TE- 9] 1L
where

d = distance between the C.G. and the C.P.
£ = distance between the C.G. and the engine gimbal
T = engine thrust

When a zero-lift pitch program is not followed the energy required to
cancel the pitching moment is wasted., Some of this wasted energy is
converted to heat energy resulting in weakening of the missile structure.

-
Note that L can be made to vanish by choosing

—
N Vv .
£ = A (B-3)
VA
—
The quantity VA is calculated as
RN PRAN Ry — J §
= - W -4
V, = R-W AR+ W (B-4)
where
SN
R = wvelocity of the missile with respect to
inertial space
—
R = position vector of the missile with respect to the earth
. N
wWp = angular velocity of the earth
= ,
W = wind velocity with respect to the earth,

normally a negligible quantity

-56-
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The missile will fly a gravity turn when equation (B-3) is satisfied.
All the quantities required to determine the direction of _\';A are calculated
in standard missile simulations. Then the thrust attitude, 3-: may be
commanded, as
3
5 = A

Va

When aunity control system (equivalent to a point mass missile) is
-t

assumed, it follows that -g = €.

The simulation will calculate the missile angular velocity,.
w= '€ A?. This quantity may be approximated with simple functions
and incorporated in a missile pitch programmer. Steering commands
from the missile programmer then cause the missile to pitch over to

approximate the desired gravity turn.

— - -
Note that when W & 0, the initial value of £ = 6§ is arbitrary.
- -
When the initial valve, £ = go, is chosen the resulting gravity turn is
specified. In general it is necessary to make several flights, using
-

different values for §o, in order to obtain the desired end conditions.

—-—
These variations can be made even when W # 0, since wind velocities

are normally small enough to be neglected.
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